Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Small ; : e2400240, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593333

RESUMO

In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.

2.
Food Microbiol ; 121: 104509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637073

RESUMO

Quantifying spore germination and outgrowth heterogeneity is challenging. Single cell level analysis should provide supplementary knowledge regarding the impact of unfavorable conditions on germination and outgrowth dynamics. This work aimed to quantify the impact of pH on spore germination and outgrowth, investigating the behavior of individual spore crops, produced under optimal and suboptimal conditions. Bacillus mycoides (formerly B. weihenstephanensis) KBAB4 spores, produced at pH 7.4 and at pH 5.5 were incubated at different pH values, from pH 5.2 to 7.4. The spores were monitored by microscopy live imaging, in controlled conditions, at 30 °C. The images were analyzed using SporeTracker, to determine the state of single cells. The impact of pH on germination and outgrowth times and rates was estimated and the correlation between these parameters was quantified. The correlation between germination and outgrowth times was significantly higher at low pH. These results suggest that an environmental pressure highlights the heterogeneity of spore germination and outgrowth within a spore population. Results were consistent with previous observations at population level, now confirmed and extended to single cell level. Therefore, single cell level analyses can be used to quantify the heterogeneity of spore populations, which is of interest in order to control the development of spore-forming bacteria, responsible for food safety issues.


Assuntos
Bacillus , Esporos Bacterianos , Humanos , Esporos , Concentração de Íons de Hidrogênio , Bacillus subtilis
3.
Microorganisms ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399638

RESUMO

The Amarillo River in Famatina, La Rioja, Argentina, is a natural acidic river with distinctive yellow-ochreous iron precipitates along its course. While mining activities have occurred in the area, the river's natural acidity is influenced by environmental factors beyond mineralogy, where microbial species have a crucial role. Although iron-oxidising bacteria have been identified, a comprehensive analysis of the entire microbial community in this extreme environment has not yet been conducted. In this study, we employ high-throughput sequencing to explore the bacterial and fungal diversity in the Amarillo River and Cueva de Pérez terraces, considered prehistoric analogues of the current river basin. Fe(II)-enrichment cultures mimicking different environmental conditions of the river were also analysed to better understand the roles of prokaryotes and fungi in iron oxidation processes. Additionally, we investigate the ecological relationships between bacteria and fungi using co-occurrence and network analysis. Our findings reveal a diverse bacterial community in the river and terraces, including uncultured species affiliated with Acidimicrobiia, part of an uncharacterised universal microbial acidic diversity. Acidophiles such as Acidithiobacillus ferrivorans, the main iron oxidiser of the system, and Acidiphilium, which is unable to catalyse Fe(II) oxidation but has a great metabolic flexibility,, are part of the core of the microbial community, showing significant involvement in intraspecies interactions. Alicyclobacillus, which is the main Fe(II) oxidiser in the enrichment culture at 30 °C and is detected all over the system, highlights its flexibility towards the iron cycle. The prevalence of key microorganisms in both rivers and terraces implies their enduring contribution to the iron cycle as well as in shaping the iconic yellow landscape of the Amarillo River. In conclusion, this study enhances our understanding of microbial involvement in iron mineral precipitation, emphasising the collaborative efforts of bacteria and fungi as fundamental geological agents in the Amarillo River.

4.
Environ Res ; 242: 117640, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007078

RESUMO

Industries today place a high premium on environmentally friendly supplies that may effectively inhibit metal dissolution at a reasonable cost. Hence, in this paper, we assessed the corrosion inhibition effectiveness of the Thiazole derivative namely, 2, 2-Dithio Bisbenzothiazole (DBBT) against mild steel (MS) corrosion in 1 M HCl. Several experimental approaches, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and surface exploration using scanning electron/atomic force microscopy (SEM/AFM) and contact angle (CA), were utilized to conduct the measurements. In 1 M HCl corrosive medium at 298 K in the subsistence of 800 ppm of DBBT, this experiment indicated DBBT as an environment-friendly and sustainable corrosion inhibitor (CI) for MS, demonstrating an inhibition efficiency (IE %) of 97.71%. To deliver a deeper knowledge of the mechanism behind inhibitive behavior, the calculated thermodynamic and activation characteristics were applied. The calculated Gibbs free energy values indicated that the CI interacted physically and chemically with the MS surface, validating physio-chemical adsorption. The findings of the EIS research revealed that an upsurge in the doses of the CI is escorted by an upsurge in polarization resistance (Rp) from (88.05 → 504.04) Ωcm2, and a diminution in double layer capacitance (Cdl) from (97.46 → 46.33) µFcm-2 at (50 → 800) ppm respectively, affirming the inhibitive potential of DBBT. Additionally, the greatest displacement in Ecorr value being 76.13 mV < 85 mV, indicating that DBBT act as a mixed-form CI. To study the further impacts of DBBT on the inhibition capabilities of the compound under investigation, density functional theory (DFT) and molecular dynamics (MD) simulation were employed. Chemical and electrochemical approaches are in agreement with the computational analysis indicating DBBT is the most efficient CI.


Assuntos
Elétrons , Aço , Corrosão , Adsorção , Concentração de Íons de Hidrogênio
5.
J Colloid Interface Sci ; 658: 865-878, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157611

RESUMO

Aluminum alloy (Al alloy) suffers from severe corrosion in acidic solution. Two-dimensional (2D) MXene-based composite coatings show great prospects for corrosion protection on metals used in special conditions. The composite coatings still face challenges in complex functionalization and orientation control. In harsh conditions, the long-term ability and roles of MXene in corrosion protection are still not clear. Here, a bio-inspired myristic-calcium chloride-Ti3C2Tx MXene (MA + CaCl2 + MXene) composite coating is successfully prepared on aluminum alloy (Al alloy) by electrodeposition process. Electrochemical tests, surface morphology, and chemical composition are analyzed to investigate the corrosion resistance and protection mechanism of the MXene coating in acidic solution (0.5 M H2SO4 + 2 ppm HF). As a result, the incorporation of MXene can significantly reduce corrosion current density (7.498 × 10-8 A/cm2) by âˆ¼ 5 orders of magnitude and impedance modulus at 0.01 Hz (|Z|0.01 Hz) value of the composite coating is 196.8 Ω·cm2, which is over 4 times higher than that of bare Al alloy (40.74 Ω·cm2) after immersion test for 72 h. Furthermore, the in-situ corrosion test confirms the enhanced corrosion resistance of the MA + CaCl2 + MXene composite coating. The MXene can increase coating thickness to 23.6 ± 0.4 µm, reduce porosity to (5.845 ± 1) × 10-5, decrease the diffusion coefficients of H+ to (1.587 ± 0.3) × 10-9 cm2/s, and enhance the adhesion of the coating to the substrate (the delamination time exceeds 5 h), thus providing improved anti-corrosion ability. This strategy opens up new prospects for construction of 2D MXene-based anti-corrosion coatings.

6.
Small ; : e2306795, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095535

RESUMO

The formation of carbonate in neutral/alkaline solutions leads to carbonate crossover, severely reducing carbon dioxide (CO2 ) single pass conversion efficiency (SPCE). Thus, CO2 electrolysis is a prospective route to achieve high CO2 utilization under acidic environment. Bimetallic Bi-based catalysts obtained utilizing metal doping strategies exhibit enhanced CO2 -to-formic acid (HCOOH) selectivity in alkaline/neutral media. However, achieving high HCOOH selectivity remains challenging in acidic media. To this end, Indium (In) doped Bi2O2CO3 via hydrothermal method is prepared for in-situ electroreduction to In-Bi/BiOx nanosheets for acidic CO2 reduction reaction (CO2RR). In doping strategy regulates the electronic structure of Bi, promoting the fast derivatization of Bi2O2CO3 into Bi-O active sites to enhance CO2RR catalytic activity. The optimized Bi2 O2 CO3 -derived catalyst achieves the maximum HCOOH faradaic efficiency (FE) of 96% at 200 mA cm-2 . The SPCE for HCOOH production in acid is up to 36.6%, 2.2-fold higher than the best reported catalysts in alkaline environment. Furthermore, in situ Raman and X-ray photoelectron spectroscopy demonstrate that In-induced electronic structure modulation promotes a rapid structural evolution from nanobulks to Bi/BiOx nanosheets with more active species under acidic CO2 RR, which is a major factor in performance improvement.

7.
Polymers (Basel) ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139933

RESUMO

The widespread use of epoxy resin (ER) in industry, owing to its excellent properties, aligns with the global shift toward greener resources and energy-efficient solutions, where utilizing metal oxides in 3D printed polymer parts can offer extended functionalities across various industries. ZnO concentrations in polyurethane acrylate composites impacted adhesion and thickness of DLP samples, with 1 wt.% achieving a thickness of 3.99 ± 0.16 mm, closest to the target thickness of 4 mm, while 0.5 wt.% ZnO samples exhibited the lowest deviation in average thickness (±0.03 mm). Tensile stress in digital light processed (DLP) composites with ZnO remained consistent, ranging from 23.29 MPa (1 wt.%) to 25.93 MPa (0.5 wt.%), with an increase in ZnO concentration causing a reduction in tensile stress to 24.04 MPa and a decrease in the elastic modulus to 2001 MPa at 2 wt.% ZnO. The produced DLP samples, with their good corrosion resistance in alkaline environments, are well-suited for applications as protective coatings on tank walls. Customized DLP techniques can enable their effective use as structural or functional elements, such as in Portland cement concrete walls, floors and ceilings for enhanced durability and performance.

8.
Int. j. morphol ; 41(6)dic. 2023.
Artigo em Inglês | LILACS | ID: biblio-1528785

RESUMO

SUMMARY: Intervertebral disc degeneration (IVDD) is induced by nucleus pulposus (NP) dysfunction as a result of massive loss of NP cells. It has been reported that the acidic microenvironment of the intervertebral disc (IVD) can induce NP cell pyroptosis, and that up-regulation of periostin (POSTN) expression has a negative effect on NP cell survival. However, the relationship between the acidic environment, POSTN expression level and NP cell pyroptosis is unclear. Therefore, the aim of this study was to explore the relationship between acidic environment and POSTN expression level in NP cells, as well as the effect of POSTN in acidic environment on NP cell pyroptosis. NP cells were obtained from the lumbar vertebrae of Sprague Dawley (SD) male rats. These cells were divided into normal and acidic groups according to whether they were exposed to 6 mM lactic acid solution. And NP cells in the acidic group were additionally divided into three groups: (1) Blank group: no transfection; (2) NC group: cells transfected with empty vector plasmid; (3) sh-POSTN group: cells transfected with sh-POSTN plasmid to knock down the expression level of POSTN. Quantitative real-time PCR (qRT-PCR) and western blot was performed to assess the expression of POSTN at the mRNAand protein levels. CCK8 was used to evaluate cell survival. Western blot, in addition, was performed to examine acid-sensing ion channels (ASIC)-related proteins. And pyroptosis was detected by ELISA and western blot. The expression level of POSTN was significantly increased in NP cells in acidic environment. Knockdown of POSTN expression promoted the survival of NP cells in acidic environment and reduced the protein levels of ASIC3 and ASIC1a in NP cells. Moreover, knockdown of POSTN expression decreased the pyroptosis proportion of NP cells and the levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. The levels of pyroptosis-related proteins NLRP3, ASC, cleaved-Caspase-1, and cleaved-GSDMD were also affected by the decreased POSTN expression. The extracellular acidic environment created by lactic acid solution activated NLRP3 inflammatory vesicle-induced caspase-1 to get involved in NP cell pyroptosis by up-regulating POSTN expression.


La degeneración del disco intervertebral (DDIV) es inducida por una disfunción del núcleo pulposo (NP) como resultado de una pérdida masiva de células NP. Se ha informado que el microambiente ácido del disco intervertebral (DIV) puede inducir la piroptosis de las células NP y que la regulación positiva de la expresión de periostina (POSTN) tiene un efecto negativo en la supervivencia de las células NP. Sin embargo, la relación entre el ambiente ácido, el nivel de expresión de POSTN y la piroptosis de las células NP es poco clara. Por lo tanto, el objetivo de este estudio fue explorar la relación entre el ambiente ácido y el nivel de expresión de POSTN en células NP, así como el efecto de POSTN en ambiente ácido sobre la piroptosis de las células NP. Las células NP se obtuvieron de las vertebras lumbares de ratas macho Sprague Dawley (SD). Estas células se dividieron en grupos normales y ácidos según se expusieron a una solución de ácido láctico 6 mM. Las células NP en el grupo ácido se dividieron adicionalmente en tres grupos: (1) Grupo en blanco: sin transfección; (2) grupo NC: células transfectadas con plásmido vector vacío; (3) grupo sh-POSTN: células transfectadas con plásmido sh-POSTN para reducir el nivel de expresión de POSTN. Se realizó una PCR cuantitativa en tiempo real (qRT-PCR) y una transferencia Western para evaluar la expresión de POSTN en los niveles de ARNm y proteína. Se utilizó CCK8 para evaluar la supervivencia celular. Además, se realizó una transferencia Western para examinar las proteínas relacionadas con los canales iónicos sensibles al ácido (ASIC). La piroptosis se detectó mediante ELISA y Western blot. El nivel de expresión de POSTN aumentó significativamente en células NP en ambiente ácido. La eliminación de la expresión de POSTN promovió la supervivencia de las células NP en un ambiente ácido y redujo los niveles de proteína de ASIC3 y ASIC1a en las células NP. Además, la eliminación de la expresión de POSTN disminuyó la proporción de piroptosis de las células NP y los niveles de citocinas proinflamatorias interleucina (IL) - 1β e IL-18. Los niveles de proteínas relacionadas con la piroptosis NLRP3, ASC, Caspasa-1 escindida y GSDMD escindida también se vieron afectados por la disminución de la expresión de POSTN. El ambiente ácido extracelular creado por la solución de ácido láctico activó la caspasa-1 inducida por vesículas inflamatorias NLRP3 para involucrarse en la piroptosis de las células NP mediante la regulación positiva de la expresión de POSTN.


Assuntos
Animais , Masculino , Ratos , Ácidos/química , Moléculas de Adesão Celular/metabolismo , Degeneração do Disco Intervertebral , Núcleo Pulposo/fisiopatologia , Ensaio de Imunoadsorção Enzimática , Moléculas de Adesão Celular/genética , Sobrevivência Celular , Western Blotting , Ratos Sprague-Dawley , Meio Ambiente , Reação em Cadeia da Polimerase em Tempo Real , Núcleo Pulposo/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR
9.
Heliyon ; 9(10): e20864, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860539

RESUMO

The main objective of this study is to investigate the impact of nanoparticles as reinforcement material on the vibrational behavior of sandwich structures in an acidic medium. The glass fiber reinforced polymer (GFRP) faces were fabricated with and without the addition of 3 wt% nanoclay and nanosilica to determine the mechanical behaviors of the GFRP faces in the presence of an acidic medium. The obtained results showed adding 3 wt% of nanoclay caused better durability and less mass variation of composite specimens in sulfuric acid. The "Coefficient of acidic immersion expansion" (ßacid) is determined by measuring the length and mass variation of GFRP specimens in the immersion, and applied to low order piecewise shear deformation theory (LOPSDT) for the first time; Also the frequency results of LOPSDT have been shown good agreement in validation with the ANSYS numerical solution. It is shown that acidic environment reduces the frequency of the first mode of sandwich plates with reinforced face by 3 wt% nanosilica, and nanoclay has increased by 6.81 % and 4.66 %, respectively. This study indicates after one month of immersion, the natural frequency of the sandwich with pure, and 3 wt% nanoclay reduces about 1 %, and the natural frequency of the sandwich with the faces reinforced with 3 wt% nanosilica reduces by more than 3 %; Moreover, the frequency of forced vibrations, caused by acidic immersion expansion, was improved significantly by 10.04 % and 6.54 % in the first mode by incorporating 3 wt% of nanoclay, and nanosilica into the faces of the sandwich in one month of immersion compared to the sandwich with pure faces.

10.
Polymers (Basel) ; 15(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37688224

RESUMO

Silicone rubber insulators are widely used in power grids because of their excellent performance, but aging has been an inevitable problem of silicone rubber, especially in extreme conditions, such as acidic conditions. In order to clarify the performance changes in silicone rubber in an acidic environment, this paper uses the developed acid-resistant silicone rubber sheet and common silicone rubber samples as the research objects, and conducts an aging comparison test on them in a natural acidic environment. The electrical properties, physical properties, and chemical properties of the two types of silicone rubber specimens with different aging times are analyzed to obtain the performance characteristics of silicone rubber under a natural acidic environment. The research results show that the dry flash voltage and pollution flashover voltage of the acid-resistant silicone rubber after one year of aging are greater than those of the common type; the water repellency of both types of silicone rubber remains in good condition. The silicone rubber produced by our team according to the self-developed acid-resistant silicone rubber formula has indeed played a role in delaying aging in an acidic environment compared with the common-type silicone rubber.

11.
Trends Immunol ; 44(10): 807-825, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714775

RESUMO

pH is tightly maintained at cellular, tissue, and systemic levels, and altered pH - particularly in the acidic range - is associated with infection, injury, solid tumors, and physiological and pathological inflammation. However, how pH is sensed and regulated and how it influences immune responses remain poorly understood at the tissue level. Applying conceptual frameworks of homeostatic and inflammatory circuitries, we categorize cellular and tissue components engaged in pH regulation, drawing parallels from established cases in physiology. By expressing various intracellular (pHi) and extracellular pH (pHe)-sensing receptors, the immune system may integrate information on tissue and cellular states into the regulation of homeostatic and inflammatory programs. We introduce the novel concept of resistance and adaptation responses to rationalize pH-dependent immunomodulation intertwined with homeostatic equilibrium and inflammatory control. We discuss emerging challenges and opportunities in understanding the immunological roles of pH sensing, which might reveal new strategies to combat inflammation and restore tissue homeostasis.


Assuntos
Inflamação , Humanos , Homeostase , Concentração de Íons de Hidrogênio
12.
Materials (Basel) ; 16(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37763572

RESUMO

This article deals with the study of hazardous chromium leaching, stabilized/solidified by cement CEM II after 28 days of curing, in an acidic environment. The mortars subjected to this study were investigated by X-ray diffraction (XRD) characterization to evaluate the influence of chromium waste on their mineralogical structure. In the study range (0.6-1.2%), increasing the mass percentage of Cr2O3 in the mortars indicates that chromium accelerates the hydration process and setting of the mortar and increases the mechanical strength of the mortars compared to the control sample. It was observed that the release of chromium during the Toxicity Characteristic Leaching Procedure (TCLP) test and the efficiency of the stabilization/solidification process depended on the initial Cr concentration and the leaching time. The use of XRD allowed the identification of new crystallized phases in the cement matrices, namely, CaCrO4·2H2O and chromium-ettringite Ca6Cr2(SO4)3(OH)12·26H2O, which confirms the immobilization of chromium and the efficiency of the stabilization/solidification process. In this research, the release mechanism was found to be primarily a surface phenomenon by modeling the experimental data (dissolution or precipitation).

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123203, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523848

RESUMO

A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.

14.
Environ Technol ; : 1-11, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37272689

RESUMO

Fermentation processes have been shown to be a good approach to food waste (FW) management. Among the commodities that can be bioproduced by using FW as an organic substrate and exploiting its biodegradability, there is lactic acid (LA). LA has gained the interest of research because of its role in the production of polylactic acid plastics. In this study, the influence of the HRT (2-5 days) used during the fermentation of the liquid fraction (∼12-13 g COD/L) of FW on LA yield and concentration was investigated. Moreover, the changes in the chemical composition (in terms of carbohydrates and organic metabolites concentration) of the influent occurring in the feeding tank were monitored and its influence on the downstream fermentation process was examined. High instability characterized the reactor run with the optimal production yield obtained on day 129 at an HRT 2 days with 0.81 g COD/g COD. This study shows the importance of the fluctuating composition of FW, a very heterogeneous and biologically active substrate, for the LA fermentation process. The non-steady state fermentation process was directly impacted by the unstable influent and shows that a good FW storage strategy has to be planned to achieve high and constant LA production.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36901648

RESUMO

Biofuel ash (BFA), which is the ash generated by biomass combustion in a biomass power plant, can be prepared as a heavy metal immobilizer and have a good immobilization effect on Cd in the soil environment of southern China, but the long-term effects of BFA on Cd immobilization remained unclear. Therefore, research about BFA aging and its influence on Cd immobilization was conducted in the paper. BFA was naturally aged into BFA-Natural aging (BFA-N) in the soil environment of southern China, and to simulate BFA-N, BFA was also artificially acid aged into BFA-Acid aging (BFA-A). The result indicated that BFA-A could partially simulate BFA-N in physicochemical properties. The Cd adsorption capacity of BFA reduced after natural aging and the decrease was more obvious in BFA-A according to Qm in Langmuir equation and qe from the pseudo-second-order kinetic model. The adsorption processes of BFA before and after aging were mainly controlled by chemical action rather than physical transport. The immobilization of Cd included adsorption and precipitation, and adsorption was the dominant factor; the precipitation proportion was only 12.3%, 18.8%, and 1.7% of BFA, BFA-N, and BFA-A, respectively. Compared with BFA, both BFA-N and BFA-A showed Ca loss, and BFA-A was more obvious than BFA-N. Ca content level was consistent with Cd adsorption level among BFA, BFA-N, and BFA-A. It could be inferred that the main immobilization mechanism of Cd by BFA before and after aging was consistent and closely related to Ca. However, the adsorption mechanism of electrostatic interaction, ion exchange, and hydroxyl complexation changed to varying degrees in BFA-N and BFA-A.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Biocombustíveis , Solo/química , Adsorção , Poluentes do Solo/análise , Carvão Vegetal/química
16.
Res Microbiol ; 174(5): 104048, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893970

RESUMO

Oenococcus oeni is the main lactic acid bacterium associated with malolactic fermentation (MLF) of wines. MLF plays an important role in determining the final quality of wines. Nevertheless, due to the stressful conditions inherent to wine and especially acidity, MLF may be delayed. This study aimed to explore by adaptive evolution improvements in the acid tolerance of starters but also to gain a better understanding of the mechanisms involved in adaptation toward acidity. Four independent populations of the O. oeni ATCC BAA-1163 strain were propagated (approximately 560 generations) in a temporally varying environment, consisting in a gradual pH decrease from pH 5.3 to pH 2.9. Whole genome sequence comparison of these populations revealed that more than 45% of the substituted mutations occurred in only five loci for the evolved populations. One of these five fixed mutations affects mae, the first gene of the citrate operon. When grown in an acidic medium supplemented with citrate, a significantly higher bacterial biomass was produced with the evolved populations compared to the parental strain. Furthermore, the evolved populations slowed down their citrate consumption at low pH without impacting malolactic performance.


Assuntos
Ácido Cítrico , Vinho , Malatos/análise , Vinho/análise , Vinho/microbiologia , Fermentação , Citratos
17.
Biochimie ; 209: 37-43, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36669724

RESUMO

Candida albicans is a common Candida species, responsible for infections in various anatomical sites under different environmental conditions, aggravated in the presence of its biofilms. As such, this study aimed to reveal the regulation of C. albicans biofilms under acidic conditions by the transcription factor Sfl1, whose role on biofilm formation is unclear. For that, microbiologic and transcriptomic analyses were performed with the knock-out mutant C. albicans sfl1Δ/sfl1Δ and its parental strain SN76, grown in planktonic and biofilm lifestyles at pH 4 (vaginal pH). The results revealed that despite being a filamentation repressor Sf1 is required for maximal biofilm formation under acidic conditions. Additionally, Sfl1 was found to induce 275 and 126 genes in biofilm and planktonic cells, respectively, with an overlap of 19 genes. The functional distribution of Sfl1 targets was similar in planktonic and biofilm modes but an enrichment of carbohydrate metabolism function was found in biofilm cells, including some genes encoding proteins involved in the biofilm matrix production. Furthermore, this study shows that the regulatory network of Sfl1 in acidic biofilms is complex and includes positive and negative regulation of transcription factors involved in adhesion and biofilm formation, such as Ahr1, Brg1, Tye7, Tec1, Wor1, and some of their targets. Overall, this study shows that Sfl1 is a relevant regulator of C. albicans biofilm formation in acidic environments and contributes to a better understanding of C. albicans virulence under acidic conditions.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida , Perfilação da Expressão Gênica , Biofilmes
18.
J Colloid Interface Sci ; 634: 684-692, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563425

RESUMO

Despite impressive progress in nanotechnology-based cancer therapy being made by in vitro research, few nanoparticles (NPs) have been translated into clinical trials. The wide gap between in vitro results and nanomedicine's clinical translation might be partly due to acidic microenvironment of cancer cells being ignored in in vitro studies. To check this hypothesis, we studied the biological impacts of two different structures of NPs on cancer cells (MDA-MB 231) at acidic (pH: 6.5) low (pH: 7) and physiological pH (pH: 7.4). We uncovered that a slight change in the pH of the cancer cell microenvironment affects the cellular uptake efficacy and toxicity mechanism of nanographene sheets and SPION@silica nanospheres. Both nanostructures exerted more substantial toxic impacts (e. g. apoptosis, necrosis, membrane disruption, and oxidative stress induction) against cancer cells at physiological pH compared to acidic niche. They also differently slowed or arrested phases of the cell cycle at different pH (S and G2/M at normal pH while G0/G1 at acidic/low pH). More specifically, cancer cells expressed higher levels of interleukins involved in cancer cell resistance at acidic pH than those incubated at physiological pH. This study revealed that a slight change in extracellular pH of cancer cells could strongly affect the therapeutic/toxic impact of nanomaterials and therefore, it should be considered in the future cancer nanomedicine research.


Assuntos
Nanopartículas , Nanosferas , Neoplasias , Nanopartículas/química , Linhagem Celular Tumoral , Apoptose , Nanomedicina , Microambiente Tumoral , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
19.
Materials (Basel) ; 15(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431389

RESUMO

The present research is focused on three different classes of orthodontic cements: resin composites (e.g., BracePaste); resin-modified glass ionomer RMGIC (e.g., Fuji Ortho) and resin cement (e.g., Transbond). Their mechanical properties such as compressive strength, diametral tensile strength and flexural strength were correlated with the samples' microstructures, liquid absorption, and solubility in liquid. The results show that the best compressive (100 MPa) and flexural strength (75 Mpa) was obtained by BracePaste and the best diametral tensile strength was obtained by Transbond (230 MPa). The lowestvalues were obtained by Fuji Ortho RMGIC. The elastic modulus is relatively high around 14 GPa for BracePaste, and Fuji Ortho and Transbond have only 7 GPa. The samples were also subjected to artificial saliva and tested in different acidic environments such as Coca-Cola and Red Bull. Their absorption and solubility were investigated at different times ranging from 1 day to 21 days. Fuji Ortho presents the highest liquid absorption followed by Transbond, the artificial saliva has the best absorption and Red Bull has the lowest absorption. The best resistance to the liquids was obtained by BracePaste in all environments. Coca-Cola presents values four times greater than the ones observed for artificial saliva. Solubility tests show that BracePaste is more soluble in artificial saliva, and Fuji Ortho and Transbond are more soluble in Red Bull and Coca-Cola. Scanning electron microscopy (SEM) images evidenced a compact structure for BracePaste in all environments sustaining the lower liquid absorption values. Fuji Ortho and Transbond present a fissure network allowing the liquid to carry out in-depth penetration of materials. SEM observations are in good agreement with the atomic force microscopy (AFM) results. The surface roughness decreases with the acidity increasing for BracePaste meanwhile it increases with the acidity for Fuji Ortho and Transbond. In conclusion: BracePaste is recommended for long-term orthodontic treatment for patients who regularly consume acidic beverages, Fuji Ortho is recommended for short-term orthodontic treatment for patients who regularly consume acidic beverages and Transbond is recommended for orthodontic treatment over an average time period for patients who do not regularly consume acidic beverages.

20.
J Biosci Bioeng ; 134(6): 521-527, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36207257

RESUMO

Acid-tolerant bacteria, which multiply under neutral pH and can survive under acidic pH conditions, have a potential role in various applications under acidic conditions. Despite higher biomass productivity, their isolation and utilisation are not sufficiently developed compared to those of acidophiles. It takes considerable effort to distinguish the acid-tolerant bacteria from the rest of the bacterial community using conventional screening methods. Thus, we developed a novel screening method for acid-tolerant bacteria, which involves shifting the pH between acidic and neutral conditions. With this method, the bacterium Enterobacter sp. AC06 was isolated. Based on comparisons with the results reported in previous studies, the strain can be classified as acid-tolerant bacteria. The decreases in the live cell concentrations were 3.87 and 6.16 log cycles after 3 h acid treatment under pH 3.0 and 2.5, respectively. These results suggest that it is possible to isolate acid-tolerant bacteria using the pH shift culture method. In summary, this is the first study on bacterial screening based on acid tolerance. Our novel method potentially contributes to the understanding and utilisation of acid-tolerant bacteria by enhancing screening efficiency. Furthermore, our novel concept shift culture is potentially valuable for screening previously uncultured bacteria tolerant to various selective stress conditions.


Assuntos
Bactérias , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...